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Fig. 4—Ferrite application to a feed for a conical
scanning antenna.
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only 10 db below the normal polarization. Further side
lobes are up to 15 db below the peak of the beam, and
antenna efficiency is low. Nevertheless, the device dem-
onstrates an application which could produce a conical
scanner in principle in all respects including the problem
of reciprocity in the ferrite.

CONCLUSION

It has been shown that a small sphere immersed in an
oblique uniform magnetic field and an rf circularly
polarized plane wave will scatter electromagnetic energy
principally along the magnetic field. It is demonstrated
that this principle can be used to direct a wide radiated
beam at the expense of some depolarization of the inci-
dent wave. Finally, it has been shown as an example
that this could be applied to the problem of conical
scanning although a scanner has not been made which
could compete with present mechanical scanners.
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A Ferrite Boundary-Value Problem in a
Rectangular Waveguide*
C. B. SHARPE} axp D. S. HEIM{

Summary—A solution is obtained for the electric field at the air-
ferrite interface (z=0) in a rectangular waveguide filled with ferrite
in the semi-infinite half (2>0) and magnetized in the direction of
the electric field. The field is expressed in terms of a Neumann series
obtained by iteration of a singular integral equation which satisfies
the boundary conditions at the interface. The equivalent circuit for
the junction is also presented.

INTRODUCTION

HE mathematical difficulties which are encoun-
tered in the solution of many boundary value
problems involving gyromagnetic media have
been pointed out by several authors.'* The formulation
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of these problems is usually straightforward but the im-
position of the boundary conditions at the isotropic-to-
anisotropic interface frequently makes them intractable.
The one discussed here, in which the anisotropic media
is a semi-infinite slab of ferrite filling a rectangular
waveguide, appears to present some of the essential dif-
ficulties common to the solution of many such problems.
Referring to Fig. 1, we consider an infinite rectangu-
lar waveguide which is filled with a ferrite medium for
2>0 and air for 2<0. The ferrite region is magnetized
in the vy direction with an internal field H. A TE,, wave
is incident from the left at the air-ferrite interface
(z=0). The problem is to determine the electric and
magnetic fields at the interface and the equivalent cir-
cuit for the junction. The ferrite medium is assumed to
be lossless and characterized by a tensor permeability

([ uw 0 Jx
(W) = ] 0 we O I
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Fig. 1—Ferrite-filled waveguide.
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In rationalized mks units, which are used throughout,
the gyromagnetic ratio is given by

I' = — 0.22 X 10°* m/ampere-second.

M, is defined as the magnetization at saturation using
the convention

B = .U«O(H -+ M)
All field quantities are taken proportional to exp (jwt).

THE EQUIVALENT CIRCUIT

Assuming all field quantities are independent of the
y coordinate, the transverse electric and magnetic fields
in the ferrite [medium (2)] can be expressed by*

0
E,® = > T, sin nwx/a s 1

n=1

©

H,0 = Y T,[nM cos nwx/a — 17,® sin nwx/ale- ™= (2)

n=1
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In the air-filled section [medium (1) ] the incident Ty,
wave is given by
E,® = sin wx/qa e (3)

H.0 = — VD sin wx/a eV (4)

and the reflected TE;; waves are given by

o«
E,") = Y R, sin nwrx/a e+ (5)

n=1

©

3V, MR, sin nwx/a ez, (6)

n=1

H,»

4 Ibid., Part 11,
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where

(1)
Yn(l) - T b

Jeoto

Y. = /(nrw/a)? — wuoeo.

The necessity of (5) and (6) is discussed by Epstein.?
Satisfying the boundary conditions at the interface
z=0 and eliminating the R, results in the following for
the coefficients of the electric field:

[TV, 4+ V@) — 27,®] sin 7x/a

= > uMT, cos nwx/a

n=1

— > (V. O+ V,®)T,sinnrx/a, 0< s < a. (7)

n=2

Both Epstein® and Van Trier® have pointed out that (7)
leads to an infinite system of simultaneous linear equa-
tions for which there is no practicable method of solu-
tion. Epstein has used a method of successive approxi-
mations to obtain a power-series expansion for Ry in
terms of x/(u?—«?). However, as he points out, this
leaves much to be desired, particularly since x/{(u?—«?)
can be very large. In the solution which follows, (7) will
be expressed as an integral equation in terms of the
electric field E, at the interface. The solution will yield
the electric and magnetic fields directly for almost all
values of x/(u?—«?2).

It will be convenient to normalize (7). Consider first
the case where only the dominant mode propagates in
the ferrite medium. That is,

(/) < wiu e < (2m/a)

It is assumed in all cases that only the dominant mode
propagates in the air-filled section. The transmission
line circuit illustrated in Fig. 2 will be equivalent to the
waveguide junction if we can identify the voltage and
current waves on the line with the fundamental com-
ponents of the transverse electric and magnetic fields,
respectively, in the waveguide. The analogy which we
shall employ here makes the constant of proportionality
between current and voltage equal to the wave admit-
tance for the dominant mode in the corresponding
waveguide. The quantity Re [VWI0*] j=4, r ¢, (Fig.
2) will be proportional to the power flow in the corre-
sponding waveguide. Thus, in the air-filled section,

E,q @ = V(z)® sin wx/a,

Hxl(i’) =

Ba® = V& sin mo/a
— VOB, = 12 sin e/,

Ha™ = VIOE M = I(2)" sin wx/a

where the subscript 1 denotes the first mode. In the
ferrite-filled section a fundamental difficulty occurs
since H,P is not simply proportional to E,;¥. Never-
theless, a similar correspondence can be made:

5 Epstein, op. cit., p. 14,
¢ Van Trier, op. cit., p. 335.



44 IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

o
—_— W
— ]
1
\ Z Y2
z=0

Fig. 2—Equivalent circuit for the air-ferrite junction.

Eq 0 = V(2)®sin7x/u

Vi®OE @ = I(z)@ sin 7x/a.

Power flow in the ferrite medium is still proportional to
Re [V®]W*] since the cosine term in (2) does not con-
tribute to the integral of Poynting’s vector over the
cross section of the waveguide. Of course, the continuity
of H, at the junction no longer implies the continuity of
current flow in the equivalent circuit. This discontinuity
in current flow at the junction is accounted for by the
current [ flowing through the impedance Z.
Since, at =0

v =1, V) = R, Vo = T,
it follows from Fig. 2 that
—T = Ty(V,® 4 ¥,@) — 27,0, (8)

It will be useful to make the change of variable, ¢ =7wx/a.
Then, at z=0

E, 0 (¢) = D T, sin ng, 0<¢ <, 9

n=1

where
2 r
r, = "f E, O (¢) sin ndde. (10)
T Jy

Following Miles,” we define a normalized field propor-
tional to E,¥,

ES0(¢) = 18(¢). (11)
Wheunce,
V(t) 2 T
g=JX =— = —f &(o) sin ode.
l T 0

It can be shown?® that for a ferrite described by a Her-
mitian tensor the Re [Z]=0, which confirms the as-
sumption of a lossless medium. Eq. (7) can now be
written,

7 }. W. Miles, “The equivalent circuit for a plane discontinuity
in a cylindrical wave guide,” Proc. IRE, vol. 34, pp. 728-742: Oc-
tober, 1946.

8 C. B. Sharpe and D. S. Heim, “Reflections in a Ferrite Filled
Waveguide.” Univ. of Michigan, Electronic Defense Group, Tech.
Rep. No. 72; May, 1957,
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2 »®
— sing = M&'(¢) — — 2 (Y, 4+ ¥,®)

T n=2
. f &(¢') sin ng’ sin npdy’, 0 < ¢ < 7. (13)
0

&’(¢) denotes the derivative of &(¢) with respect to ¢.
When all modes are cut off in the ferrite,

Wi < (/o)

and ¥1¥ is imaginary. The equivalent circuit of Fig. 2
will suthice for this case also with the understanding that
no power is transmitted away from the junction to the
right. We cannot neglect 7V since it gives rise to an in-
ductive susceptance in parallel with Z. The impedance
Z accounts for the discontinuity in the sinusoidal com-
ponent of H, as before. The theory which follows will-
therefore be wvalid for both the case where only the
dominant mode propagates in the ferrite and the case
where all modes are cut off.

THEORY

In order to solve (13) for &(¢), it is necessary to make
a commonly used assumption; namely,

Y.V = v, ¥ = ur/a, n> 1.

Then ¥V, + V,® can be approximated by

1,0 4 ¥, — Ky, n> 1, (14)

where

- ™ .
K =— ll//uo + 1/.“1]'

aw

Eq. (14) is usually a reasonable assumption to make for
problems where only the first mode propagates. How-
ever, we shall find in the present problem that this as-
sumption appears to be of critical importance for the
case where M /K =1.

With this assumption, (13) can be written,

C sin ¢

2 o T
= M&'(¢) + 7K — D.n &(¢’) sin ng’ sin nede’, (15)

T n==1 0

where
2 T
— = 1+jK-f &(¢p) sin pdep = 1 — KX. (16)
T Jo

Integrating the last term in (15) by parts and employing
the identity?®

) 1 ™ sin ¢ cos nb
sin g = — —_——
wTdg cosy — cos ¢

d\ba (”:0)1y21"'))

® W. Magnus and F. Oberhettinger, “Formulas and Theorems for
the Functions of Mathematical Physics,” Chelsea Publishing Co.,
New York, N. Y., p. 141; 1954,
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one obtains

2 £ T
Csing = M&'(¢) —}—jK—2 sin ¢ Zf &' (¢) cos ng'de’
™ n=1v ¢

cos nd

. d
fo cos Y — cos ¢ v

Interchanging the order of integration and summation
in (17) results in a singular integral equation of the
second kind.

(17)

K = &
Csing = M&(¢) + -f «gﬁjlid)— (18)
TJy cosy — cos ¢
It is convenient to define
Eq. (18) can then be expressed by the system,
; o
Csin ¢ = M&/(¢) — — 5w sin (19)
0 COSY — Cos o
K &’ () sin ¢
0= Me/te)+— [ 2P )
mJo cosy — cos ¢

Solution for Small M/K

Schmeidler!® has shown how the svstem of integral
(19) and (20) can be solved by a process of iteration
when [ ]l[/K1 <1. We shall have need for the following
integral equation and its solution:

1 ™ sin s

fs) = — | ————(dt (21)
™y COSE— COS S
1 prr 1 7 fls)sins

g(h = —f edt — — - ds. (22)
T vy T Jy COSS — cost

Reca'ling that &(¢) =0 for ¢ =0, 7, the application of
(21) and (22) to (19) and (20) vields

- .

C
&8/ (¢) = — zcow ~

8 () sin ¢
. f S A V)
0 COST — Ccosy
Eq. (23) can be identified as an integral equation of L\s
form

wJy cosq&—cosr

(23)

6/@) = )+ [ K@, [ 8lwkG, a2

v 0

by making the correspondence,

: 1 sin T
K¢, 1) = — ——— -~
T COS ¢ — COST
C
f(¢) = — —cos ¢
= — (M/K)2 (25)

103, Schmeidler,

“Integralgleichungen mit L\nwendunqen in
Physik und Technik,” Geest and Portig K.-G., Leipzig, Ger.,

1955.
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Iterating (24) yields,
8/ = fl¢) + A WK ,Tydr ’ K(r, {)d
@) = fto) + [ Ko nar [ jkie, iy

+)\2f K(qS,T)de K(T,cr)dof Ko, p)dp
0 0 0

& (WK (pd)dy.

Repeating the process leads to a Neumann series for
&./(¢). It can be shown!! that for the kernel (25), the
above series converges for |A| <1. Thus, the first order
approximation to &(¢) can be taken as

&' (¢) = f(¢)

and the second order approximation as
6.) = 10) + [ K@, mar [ j)KG wav. 06)
0 0

We shall obtain only the second order approximation,
although the extension to higher order approximations
is obvious. It follows that

C[l 1<M2:|
5 G) Jee

2C <M>21 1+ cos ¢
K\ K, nl-—cosqS

C [/ M\? 14 cos¢
-+ <~> cos ¢ <ln —~&~¥>
2r K\ K 1 — cos¢

)A/{J < 1. (27)
K

8.,/(9) =

The solution for §./(¢) follows in the same manner.
There results

CTr3/M\? M
iw == [5(6) +2 (%)
+ £_ [(%) + E. <-A{>3:| cos q5<1n 1 cos d))
K 6 \K 1 ~cose¢
ey
K\ K 1 — co8 ¢

1 1 M
R cos¢><1n -+ oo ¢> ] ‘4‘ <1 (28)
6 1 —cos¢ K

It remains to determine C, which is a function of the
unknown reactance X. From (12),

2 T
X = ~~—j &/ (¢) cos ¢pdo. (29)

T

1 Ibid., p. 429,
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It follows that

71'2 KJ
oo TR,

2
D]
— , — < 1. (30)
Kl 4 <M> J | K

[ 2\ K
Solution for Large M/K

A Neumann series valid for | M/K]|>1 can also be
obtained from (19) and (20). By direct substitution,

C /K
= — <——> sin ¢ <1n
M \M

fany

14 cos¢
&/(9) -—~>

1 —coso

B (ﬁ)zif” sin ¢dr f” &/ (W) sint & G
M) 72Jy cosp — cosTJ¢ cosT — cos ¢
&/ (¢p) = — sin
(¢) T
(YL e, g,
M/ w2Jo cosp — cosTJy cosT — cos ¢

Both (31) and (32) reduce to an equation of the same
form as (24) if we take

1 sin ¢
K(¢,7) = —

T COS¢ — COST

K\?2
N= - (—) .
M
Iteration again yields a Neumann series inn terms of A, It
can be shown that the series will converge for |A] <1,
that is, for 1 < ] M/K|. The proof parallels that given

by Schmeidler for the previous case. Second order ap-
proximations to &;(¢) and &,'(¢) are found to be,

, C <K>2+ 5 <K>4:’ . (l 1+cos¢>
&:'(#) = WK[ M s \ar) | ¢ s
1 C/K\* 1 3
- —~<-> sin¢<ln m) (33)
67 K\M 1 —cose

January

= S[(0) (2]

C KN\E 1+ cos ¢\?
— <—~> sin q&(ln ) .
2w K \M

1 —cos¢
The constant C and the reactance X for this case arc

O]
G)+56)
O]

Discussion

(34)

It is interesting to note that the example discussed
by Schmeidler which gives rise to (19) and (20) is a
problem in elasticity. The real and imaginary compo-
nents of 8’ (¢) are analogous to the horizontal and verti-
cal components of pressure, respectively, at the base of a
dam. The depth of water as a variable has the same
significance as the magnitude of the magnetizing field
H in the electromagnetic field problem.

The existence of both a real and imaginary part to the
field at the interface is unique to boundary-value prob-
lems involving anisotropic media. Although the field
strength at each position across the waveguide varies
sinusoidally with time, the phase of this variation
differs from one point to the next. Thus, the field ex-
hibits a periodic “shimmy” in time.

The value of |M/K | =1 seems to be a critical point in
the analysis. Not only do the fields display a marked
difference in form for values of Af/K on either side of
unity but the series solution itself probably does not
converge for this critical value. One would suspect the
assumption of (14) to be the source of the difficulty.

The value of |M/K|=0 leads to an indeterminate
solution for the normalized field &;/(¢) because the nor-
malizing factor I is also zero at this point. This is of
little consequence, however, since for M =0 the problem
reduces to the case of an isotropic dielectric. It is in-
teresting to note, again in contrast to isotropic problems
that X may be either inductive or capacitive since K
can be negative or positive.
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