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only 10 db below the normal polarization. Further side

lobes are up to 15 db below the peak of the beam, and

antenna efficiency is low. Nevertheless, the device dem-

onstrates an application which could produce a conical
rEFLO

LENS
scanner in principle in all respects including the problem

of reciprocity in the ferrite.

CONCLUSION

It has been shown that a small sphere immersed in an

IMPEDA oblique uniform magnetic field and an ri’ circularly
MATCH polarized plane wave will scatter electromagnetic energy

principally along the magnetic field. It is demonstrated

that this principle can be used to direct a wide radiated

beam at the expense of some depolarization of the inci-

dent wave. Finally, it has been shown as an example

that this could be applied to the problem of conical
TEFLON LOADEO
GIRGULAR GUIDE scanning although a scanner has not been made which

could compete with present mechanical scanners.
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A Ferrite BoundaryWalue Problem in a

Rectangular Waveguide*
C. B. SHARPEt

Summary—A solution is obtained for the electric field at the air-

ferrite interface (z= O) in a rectangular waveguide filled with ferrite
in the semi-infinite half (z> O) and magnetized in the direction of

the electric field. The field is expressed in terms of a Neumann series
obtained by iteration of a singular integral equation which satisfies
the boundary conditions at the interface. The equivalent circuit for
the junction is also presented.

INTRODUCTION

T
HE mathematical difficulties which are encoun-

tered in the solution of many boundary value

problems involving gyromagnetic media have

been pointed out by several authors. 1–3 The formulation
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of these problems is usually straightforward but the im-

position of the boundary conditions at the isotropic-to-

anisotropic interface frequently makes them intractable.

The one discussed here, in which the anisotropic media

is a semi-infinite slab of ferrite filling a rectangular

waveguide, appears to present some of the essential dif-

ficulties common to the solution of many such problems.

Referring to Fig. 1, we consider an infinite rectangu-

lar waveguide which is filled with a ferrite medium for

z >0 and air for z <O. The ferrite region is magnetized

in the y direction with an internal field ~. A TEIO wave

is incident from the left at the air-ferrite interface

(z= O). The problem is to determine the electric and

magnetic fields at the interface and the equivalent cir-

cuit for the junction. The ferrite medium is assumed to

be Iossless and characterized by a tensor permeability

where
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ln rationalized mks units, which are

the gyromagnetic ratio is given by

used throughout,

I’ = – 0.22 X 10ti m/ampere-second.

M, is defined as the magnetization at saturation using

the convention

B = M(H+ M).

All field quantities are taken proportional to exp (@).

THE EQUIVAI.ENT CIRCUIT

Assuming all field quantities are independent of the

y coordinate, the transverse electric and lmagnetic fields

in the ferrite [medium (2) ] can be expressed by~

Ev(,> = ~ T,, sin ,%=-V/a ~-?,”~, (1)
n= 1

HZ(J = ~ T.[mlZ cos IZT.Y/a — Irn@j sin J~T.Y/a]e--YI(2)’, (2)
,G=l

where

~.(’) = <(mr/a)’ – W’MIEJ,

~2 _ X2
~L = -.–—–. ~

P

III the air-filled section [medium (11 ] the incident TE~o

w-ave is given by

Eu(%l = sin T~/~ e–71(”L (3)

HZ(’) = – Y~(l) sin ml/(r e-l’l(’ ]”, (-L)

and the reflected TF.1O waves are given by

E,, (,) = ~ R. sin p~~~/a e?n<l~c (5)
,,=1

.

HZ(,) = ~ ~n(l)~n sin ~~V/~ eY~(”:, (6)
,,=1

4 Ibid., Part II.

where

-m(’)y,,(l) = _ -f,,(l) = #(mr/a)2 — OJ2pOq.
jw~o ‘

The necessity of (5) and (6) is discussed by Epstein,h

Satisfying the boundary conditions at the interface

z = O and eliminating the R. results in the following for

the coefficients of the electric field:

[~,(y,m + y,(! ) – 2YI(’)] sin 7r.r,a

= ~ IzMTn COS mr.c/a

.=1

,,=2

Both Epstein5 and Van Trier’ have pointed out that (7)

leads to an infinite system of simultaneous linear equa-

tions for which there is no practicable method of solu-

tion. Epstein has used a method of successive approxi-

mations to obtain a power-series expansion for R1 in

terms of K/(pz –K2). However, as he points out, this

leaves much to be desired, particularly since K/(LL2 –-K’)

can be very large. In the solution which follows, (7) willl

be expressed as an integral equation in terms of the

electric field E?, at the interface. The solution will yieldl

the electric aud magnetic fields directly for almost all

values of K/(~2 ‘K2) .

It will be convenient to normalize (7). Consider first

the case where only the dominant mode propagates in

the ferrite medium. That is,

(r/’a)’ < u2p1cf < (27r/a)’.

It is assumed in all cases that only the dominant mode

propagates in the air-filled section. The transmission

line circuit illustrated in Fig. 2 will be equivalent to the

waveguide junction if we can identify the voltage and

current waves on the line with the fundamental com-

ponents of the transverse electric and magnetic fields,

respectively, in the waveguide. The analogy which we

shall employ here makes the constant of proportionality

between current and voltage equal to the wave admit-

tance for the dominant mode in the corresponding

waveguide. The quantity Re [ 17(j)1t~)* ], j =;, r, t, (Fig.

2) will be proportional to the power flow in the corre-

sponding waveguide. Thus, in the air-filled section,

E,I(’) = V(z)(i) sin 7r.v/a, El,l(’) = V(z)”) sin 7Tx/a

yl(l)&(/) = ~(~) (i) sin ~*/a,~zl(>) = —

~~~1(~) = Yl(l)fiul(’) = 1(2)(’) sin 7r.t/a

where the subscript 1 denotes the first mode. In the

ferrite-filled section a fundamental difficulty occurs

since }l.l(t) is not simply proportional to Eul (~). Never-

theless, a similar correspondence can be made:

s Kpstein, op. cd., p. 14.
1 I’al Trier, op. cit., p. 335.
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Fig. 2—Equivalent circuit for the air-ferrite junction.

~U1(,) ~ ~(~) (,) sin ~,v/~

~1(2)&(t J = 1(z)”) sin irx/u.

Power flow in the ferrite medium is still proportional to

Re [V’1’* ] since the cosine term in (2) does not con-

tribute to the integral of Poymting’s vector over the

cross section of the waveguide. Of course, the continuity

of Hz at the junction no longer implies the continuity of

current flow ill the equivalent circuit. This discontinuity

in current flow at the junction is accounted for by the

current I flowing through the impedance Z.

Since, at z = O

~(?) = 1, ~(r) = Rl, V(,) = TI,

it follows from Fig. 2 that

–1 = TI(Y, (’) + Y“,(’)) – 21’,(”. (8)

It will be useful to make the change of variable, @ = ~x/a.

Then, atz=O

EU(L)(~) = ~ T,, sin ,1~, os@<7r, (9)
?,=1

where

T,, = L
f

“E,(’)(~) sin )t@i@, (10)
7ro

Following Miles,7 we define a normalized field propol--

tional to E,,(t),

E,(’) (@l) = I&(@). (11)

Whence,

v(l) sz=JX = ;- = ~ “8(o) sin @d@.
T“

It can be showns that for a ferrite described b}- a Her-

mitian tensor the Re [z] = O, which confirms the as-

sumption of a Iossless medium. Eq. (7) can now be

written,

7 J. W. Miles, “The equivalent circuit for a plane discontinuity
in a cylindrical wave guide, ” pROC. IRE, vol. 34, Pp. 728–742 : Oc-
tober, 1946.

6 c. B. %arpe and ~. S Heim, “Reflections in a Ferrite Filled
tlTavegwide, ” Univ. of Michigan, Electronic Defense Group, Tech.
Rep. No. 72; NIay, 1957.

2~
— sin O = M8’(f$) — — ~ (F.(l) + Y,,(z))

~ n=2

“J

7r

8(+’) sin uO’ sin @d@’, O s # < r. (13)
o

c’(4) denotes the derivative of &(@) with respect to ~.

ll~hell all modes are cut off in the ferrite,

ti~~lef < (7r/a)~,

and 1’1(~) is imaginary. The equivalent circuit of Fig. 2

will suffice for this case also with the understanding that

no power is transmitted away from the junction to the

right. We cannot neglect l(t) since it gives rise to an in-

ductive susceptance in parallel with Z. The impedance

Z accounts for the discontinuity in the sinusoidal com-

ponent of Hz as before. The theory which follows will-

therefore be valid for both the case where only the

dominant mode propagates in the ferrite and the case

where all modes are cut off.

THEORY

In order to solve (13) for 8(4), it is necessary to make

a commonly used assumption; namely,

‘Y. (1) = 7n(2) g ,~=/u, n > 1.

Then Y,,(’) + Y.(2) can be approximated by

1’~(1) + 17,,0) ~ – jKfl, JL > 1,

where

(14)

Eq. (14) is usually a reasonable assumption to make for

~Jroblems ~vhere only the first mocle propagates. How-

ever, we shall find in the present problem that this as-

sumption appears to be of critical importance for the

case where M,rA” = 1.

~Vith this assurnptioll, (13) call bc written,

C sin $

r

= M&’(@) +jK : ~PJ s&(f$’)sin Ho’ sin M@@’, (15)
~ ?,=1 o

where

–c=l+jK~ s“8(#1)sin @I# = 1 – K.Y. (16)
T,

Integrating the last term in (15) by parts and employing

the identityg

1

s

‘ sin ~ cos mJ
sin @ = — —d*, (} 2 =0 ,1 ,2,...),

n- 0 (0s$— cos~

g Jfr. ibIagnus and F. Oberhettinger, “Formulas and Theorems for
the Functions of Mathematical Physics, ” Chelsea Publishing CO.,

Sew York, .\”. Y., p. 141; 1954.
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one obtains

J
T Cos 114

. ——— d$.
0 cos*—cos#J

(17)

Interchanging the order of integratio{l al)d summation

in (I 7) results in a singular intexral equation of the

second kind.

.T

C sin@ = M&’(@) +j A s 8’(+)sin d
—--—–-—– (i*. [18)

T () Cos + — Cos @

It is convenient to define

8(+) = 8,(4) + .&(+).

Eq. (18) can then be expressed by the system,

SolutiotL for Small MIK

SchmeidIer10 has shown how the system of integral

(19) and (20) can be solved by a process of iteration

when I 31/A-l <1. We shall have need for the following

integral equation and its solution:

(21)

Recalling that 8(@) = O for @ = O, ~, the application of

(21) and (22) to (19) and (20) yielcls

(2?))

Eq. (23) can be identified as an inte~ral equ~tion of tl%

form

./0 .1 ,,

by making the correspondence,

sin r
K(O, ,) = :- ;=;—---

— COS T

f(f$) = – ; Cos r)

A = – (itJ/K)’. (25)

‘O \Y. Schmeidler, “I utegralgleichtl nqen mit .k:wendu ngcn in
Ph>-sik und Tech nik, ” Geest and Pm-ti~ K“.-G., Leipng, Ger., 1955.

Iterating (24) yields,

45

S T

+A2 ‘ J sr

K(@, T)dT K(7-, U)o% A-(a, p)(zp

n o u

&’(*) K(d) 4’.

Repeating the process leads to a Neumann series for

8,’(r#J). It c:Ln be shownl~ that for the kernel (25), the

above series converges for I A I <1. Thus, the first order

approximation to ~’(~) call be taken as

and the second order approximation as

We shall obtain only the second order approximation,

although the extension to higher order approximations

is obvious. It follows that

‘l;(’) = -+[’+wlcos’

_2CM2

()

I+cos@
——In
7rzK K, 1-- Cos f$

: <1. (27)

‘rhc solution for L.’(d) follows in the same manner.

There results

‘r;(’)=-3X3+ 2(31

()[(M’ l+ COS+ 2
+ ;:2 y

)
in ——

1– Cosd

-+-cos”(’n%%)’l1:1<’’28)
It remains to determine C, which is a function of the

unknown reactance X. From (12),

11 Ibid., p. 4’29.
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It follows that

~=rjvy ()4M’

Solution fo~ Large iU/K

(30)

.4 NTeumann series valid for 1111/K I >1 can also be

obtained from (19) and (20). By direct substitution,

Both (31) and (32) reduce to an equation of the same

form as (24) if we take

sin @
K(+, T) = ~

~ COS@— COST

K,

()
A=–—.

M

Iteration again yields a Neumann series in terms of A. It

can be shown that the series will converge for I Al <1,

that is, for 1< I ll/R- 1. The proof parallels that given

by Schmeidler for the previous case, Second order ap-

proximations to &~’(q5) and 8,’(4) are found to be,

‘;(” = Mi3++(a31sin’

-Zaia’sin’(ln=%)o’34)
The co]lstant C and the reactance X for this case are

C’=

‘++[(52:+(:)41’

_,( (:)++(3 / 3,<1 (~v

q:+(:)+;(:)] :M ~~~
DISCUSSION

lt is interesting to note that the example discussed

by Schmeidler which gives rise to (19) and (20) is a

problem in elasticity. The real and imaginary compo-

nents of &’ (@) are analogous to the horizontal and verti-

cal components of pressure, respectively, at the base of a

dam. The depth of water as a variable has the same

significance as the magnitude of the magnetizing field

H in the electromagnetic field problem.

The existence of both a real and imaginary part to the

field at the interface is unique to boundary-value prob-

lems involving anisotropic media. Although the field

strength at each position across the waveguide varies

sinusoidally- with time, the phase of this variation

differs from one point to the next. Thus, the field ex-

hibits a periodic ‘ishimmy” in time.

The value of lM/K \ = 1 seems to be a critical point in

the analysis. Not only- do the fields display a marked

difference in form for values of M/K on either side of

unity but the series solution itself probably does not

converge for this critical value. One would suspect the

assumption of (14) to be the source of the difficulty.

The value of ]JI/K I = O leads to an indeterminate

solution for the normalized field &/(@) because the nor-

malizing factor 1 is also zero at this point. This is of

little consequence, however, since for M= O the problem

reduces to the case of an isotropic dielectric. It is in-

teresting to note, again in contrast to isotropic problems

that X may be either inductive or capacitive since h’

can be negative or positive.


